Environment dependent noise tracking for speech enhancement
نویسندگان
چکیده
Numerous efforts have focused on the problem of reducing the impact of noise on the performance of various speech systems such as speech recognition, speaker recognition, and speech coding. These approaches consider alternative speech features, improved speech modeling, or alternative training for acoustic speech models. This study presents an alternative viewpoint by approaching the same problem from the noise perspective. Here, a framework is developed to analyze and use the noise information available for improving performance of speech systems. The proposed framework focuses on explicitly modeling the noise and its impact on speech system performance in the context of speech enhancement. The framework is then employed for development of a novel noise tracking algorithm for achieving better speech enhancement under highly evolving noise types. The first part of this study employs a noise update rate in conjunction with a target enhancement algorithm to evaluate the need for tracking in many enhancement algorithms. It is shown that noise tracking is more beneficial in some environments than others. This is evaluated using the Log-MMSE enhancement scheme for a corpus of four noise types consisting of Babble (BAB), White Gaussian (WGN), Aircraft Cockpit (ACN), and Highway Car (CAR) using the Itakura-Saito (IS) (Gray et al. in IEEE Trans. Acoust. Speech Signal Process. 28:367–376, 1980) quality measure. A test set of 200 speech utterances from the TIMIT corpus are used for evaluations. The new Environmentally Aware Noise Tracking (EA-NT) method is shown to be superior in comparison with the contemporary noise N. Krishnamurthy · J.H.L. Hansen ( ) Center for Robust Speech Systems, University of Texas at Dallas, Dallas, TX, USA e-mail: [email protected] tracking algorithms. Evaluations are performed for speech degraded using a corpus of four noise types consisting of: Babble (BAB), Machine Gun (MGN), Large Crowd (LCR), and White Gaussian (WGN). Unlike existing approaches, this study provides an effective foundation for addressing noise in speech by emphasizing noise modeling so that available resources can be used to achieve more reliable overall performance in speech systems.
منابع مشابه
A New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain
Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...
متن کاملDFT domain subspace based noise tracking for speech enhancement
Most DFT domain based speech enhancement methods are dependent on an estimate of the noise power spectral density (PSD). For non-stationary noise sources it is desirable to estimate the noise PSD also in spectral regions where speech is present. In this paper a new method for noise tracking is presented, based on eigenvalue decompositions of correlation matrices that are constructed from time s...
متن کاملSpeech Intelligibility Prediction Intended for State-of-the-Art Noise Estimation Algorithms
Noise estimation is critical factor of any speech enhancement system. In presence of additive nonstationary background noise, it is difficult to understand speech for normal hearing particularly for hearing impaired person. The background interfering noise reduces the intelligibility and perceptual quality of speech. Speech enhancement with various noise estimation techniques attempts to minimi...
متن کاملA Novel Frequency Domain Linearly Constrained Minimum Variance Filter for Speech Enhancement
A reliable speech enhancement method is important for speech applications as a pre-processing step to improve their overall performance. In this paper, we propose a novel frequency domain method for single channel speech enhancement. Conventional frequency domain methods usually neglect the correlation between neighboring time-frequency components of the signals. In the proposed method, we take...
متن کاملSpeech enhancement based on hidden Markov model using sparse code shrinkage
This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- I. J. Speech Technology
دوره 16 شماره
صفحات -
تاریخ انتشار 2013